a2 United States Patent

Markus et al.

US009208190B2

US 9,208,190 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

LOCK REORDERING FOR OPTIMISTIC
LOCKING OF DATA ON A SINGLE NODE TO
AVOID TRANSACTION DEADLOCK

Inventors: Mircea Markus, L.ondon (GB); Manik
Surtani, London (GB)

Assignee: Red Hat, Inc., Raleigh, NC (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 153 days.

Appl. No.: 13/463,190

Filed: May 3, 2012

Prior Publication Data

US 2013/0297580 A1 Now. 7, 2013

Int. Cl1.
GO6F 7/00
GO6F 17/00
GO6F 9/46
GO6F 17/30
GO6F 15/16
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

GO6F 17/30351 (2013.01); GOGF 9/466
(2013.01); GOGF 17/30362 (2013.01); GO6F
17/30575 (2013.01)

Field of Classification Search

CPC ... GOG6F 17/30362; GOGF 17/30575;
GOGF 9/466
USPC .o 707/703, 615; 718/101

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,301,700 B1* 10/2012 Havemose ............... 709/205
2007/0043703 Al* 2/2007 Bhattacharya etal. 707/999.003
2009/0217274 Al* 82009 Corbinetal. ... 718/101
2009/0287703 Al* 11/2009 Furuya ............. 707/999.008
2009/0313311 Al* 12/2009 Hoffmannetal. ..... 707/999.204
2011/0016348 Al* 1/2011 Paceetal. ....cooevvninne. 714/2

OTHER PUBLICATIONS

Randy Chow and Theodore Johnson. Distributed Operating Systems
and Algorithms. Addison-Wesley, Reading, Massachusetts, USA,

123-127,207-218 and 425-452.*
* cited by examiner

Primary Examiner — Usmaan Saeed
Assistant Examiner — Brian E. Weinrich
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A node a data grid receives a prepare request identifying data
to lock for a first transaction. The prepare request indicates a
locking order that is different from a locking order indicated
by a prior prepare request of a second transaction using the
same data. The node identifies keys that correspond to the
data. The keys are co-located on the node. The node ranks the
keys to define an order for acquiring locks for the data based
on key identifiers that correspond to the keys. The defined
order matches a locking order used by the second transaction.
The node acquires locks for the data using the defined order.

13 Claims, 5 Drawing Sheets

Virtual Machine 1 301 Virtual Machine 3 341

Virtual Machine 2 311

Process-1 303

Node-1 305

Process-3 343

Nodo 324

Process-2 313

aoquire firstock (366) (_}

acquire second lock (370) C
[{¢—provide success message (37 22—
receive commit request to release locks (374————»

release first lock (376) C
release second lock (378) C

[——receive prepare request fo lock Data-A and Data-B (360)}—»j€—receive prepare request to lock Data-B and Data-A (361)—
rank the keys for Data-A and Data-B (362) C D rank the keys Data-B and Data-A (363)

create the lock order based on the ranking (364) C D create the lock order based on the ranking (365)

:) wait to acquire first lock (367)

D acquire first lock (369)

D acquire second lock (371)

[————provide success message (373———>]
je—receive commit request to release locks (375)

:) release firstlock (377)
D release second lock (379)




US 9,208,190 B2

Dec' 83 2015

U.S. Patent

| "9Id

01 PO ElRq

\

21018 Ejleq \
TET g-eieq
] TET v-eieq
OZF 8IMPo 07
TEFT ainpow sbesols
/ DTHT 8InPOp UoBnqsiq
52T € 8PON U9 Eleq
_._,_,_ ATZT £-55890.d
[ 3067 obeuep uopoesues| |
dcll vl
a10JS Bjeq _ J5v1 uonedlddy Jusi) _ al0)S Bleq
€01 sulyoBl pAIyL
TEFT ompop oBesols VERT ainpop ebexis
g1 anpop uognquisiq VIFT 8inpoy uognaigsiq
g%2T | 8poN pu9 ejeq < VGZI | SpON pus eled
TRV 2-558004d VEZT 1-55800.d
| 5067 JoBeuepy uopoesuey | | V06T sobeuepy uogoesues] |
| EFT uoneorddy e | |- | VGpT vopeoddy oy |
g GEO} BUIYOBIN PUCORS | VE0} BUIYOB 1S4

00}




US 9,208,190 B2

Sheet 2 of 5

Dec. 8, 2015

U.S. Patent

¢ Ol
G5 Eleq
uoneinbyuo)
(374
JapIQ X007
162 ereq G0¢ INPON-ans
uonisinboy %207

57 | —

05z eevamo

€0¢ SINPON-GNS JapIO

10¢ SINPON %907

0¢ SPON pajstjug




US 9,208,190 B2

Sheet 3 of 5

Dec. 8, 2015

U.S. Patent

(62€) %00] puooss ssesjal O
(£2€) 00 154y BSEB|RY O

(G2€) $400| 8SEA[8I 0} J5NDAI IO BAIRIEI———p!

le——{¢/¢) abessaw $5800Nns apiaoud
(12¢) %00| puooss asinboe O

(69€) %00} 151y @anboe O

(29€) %001 3544 BuNboe 0) Jlem O

(cog) Bupjues ay) uo pPaseq JapJo ¥00| Y jeald O
(€9¢) v-e1eq pue g-ejeq sk auj yues O
—{1,9¢) V-BIBQ PUB g-E1BQ %00] 0} Jsanbai aiedaid aAiDe)—p)

€0l

U (82€) ¥00] pucoas aseajal
) (026) 1001 1524 eseares

e——{}/£) $%00| 3SEA[0J 0} }53NbAI JWWOD BAIBOR)
(/) 962555l $5950NS SPIAQI] e
U (028) 3o0| puooas aunboe

™) (99¢) 1001 1524 auntoe

U (9€) Bupjues ay) uo paseq JepJo ¥20] ay) ajeald

U (29¢) g-218Q PUE Y-E1R( Jo) SABY BU) HUEl

«—(09€) g-e18q PUB Y-BJeq %00] 0} 1s8nbal asedaid 8A1808)—

TTE Z-9PON | %€ geeq | | 7€ v-aea |

TIE Z-ss8001d

¥E SInpop %001 S £-OPON

GOE 1-9PON

L

€ SUIYDEIN [ENJIA

TP £-88800.d TOT 1-559201d

7€ € SUIYOBI [enpIA

TOE | SUIYOB [ENMIA




U.S. Patent Dec. 8, 2015 Sheet 4 of 5 US 9,208,190 B2

( START ) 400
401 /

Receive a prepare request
to lock data for a transaction

l 403
Identify the keys on a node
that correspond to the data

\L 405

Rank the keys to define an order for
acquiring the locks for the data based on
the key identifiers of the keys

YES 415
4

Existing lock
released?

Update the value for the key

based on the new value in the request ‘ vE

NO
YE:

in the order? 41

Timeout period
expire?

NO M
* 9

Send a notfification to the fransaction
originator node indicating a lock

has been acquired for the keys YES
I 421 l 413
Receive a commit request to release locks Sending a message to the
fransaction originator node that a
l 423 lock has not been acquired

Release the locks for the fransaction

END s

g

FIG. 4



U.S. Patent Dec. 8, 2015

Instructions 522

Lock Module 201

Sheet 5 of 5

Processing Device 502 i 2

US 9,208,190 B2

Video Display
510

Main Memory 504

Instructions 522

Lock Module 201

Alpha-Numeric Input Device
512

Cursor Control Device
514

Signal Generation Device
516

Static Memory

Data Storage Device 518

506

Network Interface Device

208

%

Machine-Readable Storage Medium

528

Instructions 522

Lock Module 201

FIG. 5



US 9,208,190 B2

1
LOCK REORDERING FOR OPTIMISTIC
LOCKING OF DATA ON A SINGLE NODE TO
AVOID TRANSACTION DEADLOCK

TECHNICAL FIELD

Embodiments of the present invention relate to transaction
deadlock, and more particularly, to lock reordering for opti-
mistic locking of data on a single node to avoid transaction
deadlock.

BACKGROUND

The XA (eXtended Architecture) protocol relates to trans-
actions that consist of multiple operations that access
resources. For example, a banking application may conduct
an XA transaction that consists of two operations (1) deduct
money from a first bank account and (2) add money to a
second bank account. Typically, either both of the operations
relating to the XA transaction will be permanent, if success-
ful, or none of them will be committed.

In traditional data storage systems, consistency is usually
achieved by a data locking mechanism to prevent data from
being corrupted or invalidated when multiple users try to
write to the same data. When a lock of the data is acquired for
a transaction, the transaction has access to the locked data
until the lock is released. Other transactions may not have
access to the locked data. The XA standard uses a two-phase
commit (2PC) protocol to ensure that all resources enlisted
within a transaction either commit or rollback to a previous
state. The first phase is preparation, which may include
acquiring a lock on the data for the transaction to prevent
other transactions from accessing that data, and updating the
values (e.g., deduct money, add money) for the locked data to
reflect the transaction. If preparation is successful, the second
phase of commitment can be initiated, which may include
releasing the locks to allow other transactions access to the
data that was updated. A pessimistic locking approach typi-
cally acquires locks with each write operation of a transac-
tion. For example, a lock may be acquired when the first bank
account balance is changed and a lock may be acquired when
the second account balance is changed. In an optimistic lock-
ing approach, locks are usually not acquired until during the
prepare phase.

A deadlock may occur when two transactions that write to
the same data execute concurrently or execute nearly at the
same time. A deadlock is a situation wherein two or more
competing actions are each waiting for the other to finish, and
thus, neither transaction finishes. For example, a first trans-
action (TX1) wishes to acquire locks on Data-A and Data-B
in that order. A second transaction (TX2) wishes to acquire
locks on Data-B and Data-A in that order. If the transactions
run in parallel, TX1 may obtain a lock on Data-A, and TX2
may obtain a lock on Data-B. TX1 would like to progress and
acquire a lock on Data-B, but would not be able to do so since
Data-B is already locked by TX2. Similarly, TX2 would try to
acquire a lock on Data-A, but would not be able to do so since
Data-A is already locked by TX1. Each transaction waits for
the other transaction to finish causing a deadlock.

Traditional solutions typically wait for a deadlock to occur
and then build a dependency graph describing the dependen-
cies between the deadlocked transactions. Generally, conven-
tional solutions terminate one of the two deadlocked transac-
tions. Such traditional solutions may be quite costly because
they involve a large amount of CPU and network usage,

10

15

20

25

30

35

40

45

50

55

60

65

2

which is not ideal. Such solutions are generally also not fast
enough in terminating a deadlocked transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention will be
understood more fully from the detailed description given
below and from the accompanying drawings of various
embodiments of the invention.

FIG. 1illustrates exemplary network architecture, in accor-
dance with various embodiments of the present invention.

FIG. 2 is a block diagram of an embodiment of a lock
module in an enlisted node.

FIG. 3 is a block diagram of one embodiment of lock
reordering for optimistic locking of data on a single node to
avoid transaction deadlock.

FIG. 4 is a flow diagram illustrating an embodiment for a
method of lock reordering for optimistic locking of data on a
single node to avoid transaction deadlock.

FIG. 51is ablock diagram of an exemplary computer system
that may perform one or more of the operations described
herein.

DETAILED DESCRIPTION

Described herein are a method and apparatus for lock reor-
dering for optimistic locking of data on a single node to avoid
transaction deadlock. A data grid has multiple operating sys-
tem processes. A process can run a data grid node, which is an
instance of a data grid application. A process “owning’ trans-
action data for a transaction hereinafter refers to a process that
has a capability to perform prepare operations (e.g., acquire
data locks, update values) for the transaction. A process that
owns transaction data for a transaction is hereinafter referred
to as an “enlisted process.” A node running in an enlisted
process is hereinafter referred to as an “enlisted node.” A
process that manages a transaction is hereinafter referred to as
a “transaction originator process.” A node running in a trans-
action originator process is hereinafter referred to as a “trans-
action originator node.” Transaction data for the transaction
may not be owned by the transaction originator node and the
transaction originator node can communicate with the
enlisted node which owns the transaction data for a transac-
tion.

The data that is owned by an enlisted node can be used by
multiple transactions. An enlisted node can receive prepare
requests from transaction originator nodes, concurrently or
nearly at the same time, to prepare the same data for a commit
operation, but for different transactions. For example, a first
transaction involves two operations: (1) deduct money from
the balance for a first bank account and (2) add the deducted
money to the balance of the second bank account. A second
transaction involves two operations using the same data, but
in an order different from the first transaction, such as (1)
deduct money from the balance for the second bank account
and (2) add the deducted money to the balance of the first bank
account. The enlisted node may own data for the first bank
account and the second bank account and may receive prepare
requests from the transaction originator nodes for the first
transaction and the second transaction, concurrently or nearly
at the same time, to prepare the same data (e.g., balance for
first bank account, balance for second bank account) for a
commit operation, but for the two different transactions.

To avoid transaction deadlock, in one embodiment, the
enlisted node executing in a computer system in a data grid
receives a prepare request identifying data to lock for a trans-
action and identifies the keys that correspond to the data. The



US 9,208,190 B2

3

keys are co-located on the enlisted node. The enlisted node
ranks the keys to define an order for acquiring locks for the
data based on key identifiers that correspond to the keys and
acquires locks for the data using the defined order. The
enlisted node can define an order for acquiring locks for each
prepare request.

Embodiments avoid deadlocks by ensuring that transac-
tions attempting to lock the same data use identical order for
obtaining locks on that data. For example, if the enlisted node
determine that the lock order for the first transaction is to first
lock the balance of the first bank account and then to lock the
balance of the second bank account, the enlisted node ensures
that the lock order for the second transaction is also to first
lock the balance of the first bank account and then to lock the
balance of the second bank account, which is the same order
as the first transaction, thus avoiding deadlock.

FIG. 1 is an exemplary network architecture 100 in which
embodiments of the present invention can be implemented.
The network architecture 100 can include multiple machines
103,105, 107 connected via a network (not shown). The net-
work may be a public network (e.g., Internet), a private net-
work (e.g., a local area network (LAN)), or a combination
thereof.

The machines 103,105,107 may be configured to form a
data grid 150. Data grids are an alternative to databases. A
data grid 150 distributes data across multiple operating sys-
tem processes. The operating system processes can run an
instance of a data grid application and can use a distribution
algorithm to determine which processes in the data grid 150
have the data for a transaction. Each process can own data and
allow other processes access to the data. Unlike a database,
the distributed data of a data grid 150 removes single points of
failure.

FIG. 1 is an exemplary network architecture 100 in which
embodiments of the present invention can be implemented.
The network architecture 100 can include multiple machines,
including a first machine 103 A, a second machine 103B, and
a third machine 103C, connected via a network (not shown).
The network may be a public network (e.g., Internet), a pri-
vate network (e.g., a local area network (LAN)), or a combi-
nation thereof.

The machines 103A-103C may be configured to form a
data grid 150. Data grids are an alternative to databases. A
data grid 150 distributes data across multiple operating sys-
tem processes. The operating system processes can run an
instance of a data grid application and can use a distribution
algorithm to determine which processes in the data grid 150
have the data for a transaction. Each process can own data and
allow other processes access to the data. Unlike a database,
the distributed data of a data grid 150 removes single points of
failure.

The machines 103A-103C may be hardware machines
such as desktop computers, laptop computers, servers, or
other computing devices. Each of the machines 103A-103C
may include an operating system that manages an allocation
of resources of the computing device. In one embodiment,
one or more of the machines 103A-103C is a virtual machine.
For example, one or more of the machines may be a virtual
machine provided by a cloud provider. In some instances,
some machines may be virtual machines running on the same
computing device (e.g., sharing the same underlying hard-
ware resources). In one embodiment, one or more of the
machines 103A-103C is a Java® Virtual Machine (JVM),
which may run on a hardware machine or on another virtual
machine.

The machines 103A-103C each include one or more pro-
cesses, including a first process 123 A, a second process 123B,

10

15

20

25

30

35

40

45

50

55

60

65

4

and a third process 123C. Each process 123A-123C is an
operating system process (e.g., a Java® Virtual Machine
instance). Each process 123 A-125C can run a data grid node
(also hereinafter referred to a “node”) 125A-125C, which is
an instance of a data grid application. Each process 123A-
123C runs one of the data grid nodes 125A-125C. For
example, the first process 123A runs a first data grid node
125A. Each machine 103A-103C can run more than one
process and a corresponding data grid node.

Each data grid node 125A-125C may act as a server to
clients and as a peer to other data grid nodes 125A-125C. An
in-memory data grid may rely on main memory for data
storage. In-memory data grids are faster than disk-optimized
data grids since disk interactions are generally much slower
than in-memory interactions. For brevity and simplicity, an
in-memory data grid is used as an example of a data grid
throughout this document.

In one embodiment, the in-memory data grid 150 operates
in a client-server mode, in which the in-memory data grid 150
serves resources (e.g., a stateful data store such as a cache) to
client applications. In one embodiment, each machine 103 A-
103C is a client machine hosting one or more applications
145A-145C. Each of the applications 145A-145C can be any
type of application including, for example, a web application,
a desktop application, a browser application, etc. each of the
applications 145A-145C can be hosted by one or more of the
machines 103A-103C. In one embodiment, the in-memory
data grid 150 acts as a shared storage tier for the applications
145A-145C. A separate memory space may be generated for
each of the applications 145A-145C. In one embodiment, a
client application runs outside of the virtual machines (e.g.,
the machines 103A-103C) of the data grid nodes 125A-125C.
In another embodiment, a client application runs in the same
virtual machine as a data grid node 125A-125C. In another
embodiment, a client application may not be a Java®-based
application and may not be executed by a Java® Virtual
Machine.

Each of the processes 123A-123C in the in-memory data
grid 150 may execute data operations, such as to store objects,
to retrieve objects, to perform searches on objects, etc. Unlike
a database, the in-memory data grid 150 distributes stored
data across multiple data stores 112A-112C (e.g., cache-
nodes, grid-nodes) of the multiple processes 123A-123C. The
in-memory data grid 150 can include a volatile in-memory
data structure such as a distributed cache. Each of the pro-
cesses 123A-123C can maintain arespective data store 112A-
112C (e.g., cache-node, grid-node). In one embodiment, the
data grid 150 is a key-value based storage system to host the
data for the in-memory data grid 150 in the data stores 112A-
112C.

The key-value based storage system (e.g., data grid 150)
can hold and distribute data objects based on a distribution
algorithm (e.g., a consistent hash function). For example, the
in-memory data grid 150 may store bank account objects with
a key-value model of (accountNumber, accountObject). The
data grid 150 can store a particular key-value pair by using a
distribution algorithm to determine which of the processes
123 A-123C stores the particular value for the key-value pair
and then place the particular value within that process. Each
of'the processes 123A-123C of the data grid 150 can use the
distribution algorithm to allow key look up.

When one of the client applications 145A-145C is writing
data to the data grid 150, the client application can connect to
any of the processes 123A-123C in the data grid 150 and
provide the key-value pair (e.g., accountNumber, BankAc-
count instance) to the process. Each of the processes 123A-
123C can include a respective distribution module 141A-



US 9,208,190 B2

5

141C to determine, based on the key (i.e., accountNumber)
and a distribution algorithm, which node in the data grid 150
is the enlisted node where the data (e.g., key-value pair) is to
be stored. Each of the distribution modules 141A-141C may
then send the key-value pair to the enlisted node via the
network. Each data grid node 125A-125C can include a
respective data storage module 143A-143C to store the key-
value pair in its corresponding data store 112A-112C.

For example, one of the client applications 145A-145C
may connect to transaction originator node 1 (125A) and
passes a key-value pair for Data-A (131) and a key-value pair
for Data-B (133) to the transaction originator node 1 (125A)
to add data to the data grid 150. The distribution module 141 A
of the transaction originator node 1 (125A) uses the keys in
the received key-value pairs and a distribution algorithm to
identify that node 3 (125C) is the enlisted process that owns
the Data-A (131) and Data-B (133) for the keys. The distri-
bution module 141A of the transaction originator node 1
(125A) may then send the key-value pairs to the enlisted node
3 (125C) via the network. Upon receiving the key-value pairs,
the storage module 143C in the enlisted node 3 (125C) may
store the key-value pair for Data-A (131) and the key-value
pair for Data-B (133) in its data store 116.

The data grid 150 can support multi-operational transac-
tional access of the processes 123A-123C and the corre-
sponding data stores 112A-112C. A multi-operational trans-
action can be an XA (eXtended Architecture) transaction. For
brevity and simplicity, an XA transaction is used as an
example of a multi-operational transaction throughout this
document. In the XA architecture, an XA transaction is a
distributed transaction that consists of multiple operations
that access one or more resources. Examples of transaction
operations for a XA transaction can include, and are not
limited to, start, read, write, prepare, commit, rollback, and
recover operations. Performing operations that pertain to
multi-operational transactional access on data in the
in-memory data grid 150 may be performed by calling a get,
put, remove, replace, start, prepare, commit, rollback, and
recover functions on one or more processes of the in-memory
data grid 150.

One of the client applications 145A-145C can initiate a
transaction having multiple operations (e.g., reduce balance,
increase balance) by communicating a start of a transaction to
a respective transaction manager 190A-190C. Each of the
transactions managers 190A-190C communicates with a cor-
responding one of the client applications 145A-145C and
with the various processes 123 A-123C in the data grid 150 to
manage the transaction. In one embodiment, each of the pro-
cesses 123A-123C includes a corresponding transaction
manager 190A-190C to allow each of the client applications
145A-145C to initiate a transaction with any of the processes
123A-123C in the data grid 150.

The operations that pertain to an XA transaction are con-
sidered to be within the scope of an XA transaction. Data
consistency in the data grid 150 can be by a data locking
mechanism to prevent data from being corrupted or invali-
dated when multiple users try to write to the same data. When
a lock of the data is acquired for a transaction, the transaction
has access to the locked data until the lock is released. Other
transactions may not have access to the locked data. The XA
standard uses a two-phase commit (2PC) protocol to ensure
that all resources enlisted within a transaction either commit
or rollback to a previous state. The first phase is preparation,
which may include acquiring a lock on the data for the trans-
action to prevent other transactions from accessing that data,
and updating the values (e.g., deduct money, add money) for
the locked data to reflect the transaction. If preparation is

10

15

20

25

30

35

40

45

50

55

60

65

6

successful, the second phase of commitment can be initiated
in the data grid 150, which may include releasing the locks to
allow other transactions access to the data that was updated.
For example, a banking application (e.g., one of the client
applications 145A-145C) may wish to conduct a transaction
that consists of two operations: (1) deduct money from the
first bank account, and (2) add the deducted money to a
second bank account. Before any of the write operations are
committed to the data grid 150, the success of performing of
each write operation is first determined.

Transaction originator nodes and enlisted nodes in the data
grid 150 can use optimistic locking to ensure that either all of
the operations for a transaction successfully happen or none
of them are committed. In an optimistic locking approach,
locks are usually not acquired until during the prepare phase.

A deadlock may occur when two transactions that write to
the same data execute concurrently or nearly at the same time.
To avoid deadlock, the enlisted nodes (e.g., node 3 125C) in
the data grid 150 can include a lock module 170 to create and
use the same order for acquiring data locks for the multiple
transactions that use the same data to avoid a deadlock
between the multiple transactions. Embodiments of using the
same order for acquiring data locks for multiple transactions
which use the same data is described in greater detail below in
conjunction with FIG. 3 and FIG. 4.

FIG. 2 illustrates a block diagram of one embodiment of a
lock module 201 in an enlisted node 200. The enlisted node
200 may correspond to enlisted process 123C and data grid
node 125C running in machine 107 of FIG. 1. The enlisted
node 200 includes a lock module 201. The lock module 201
can include an order sub-module 203 and a lock acquisition
sub-module 205.

The data store 250 is coupled to the enlisted node 200 and
can store data 251 for that is used by multiple transactions.
The data 251 is data that is owned and maintained by the
enlisted node 200. The data store 250 can be a cache. The data
251 can include key-value pairs. The data 251 can be used by
multiple transactions concurrently or nearly at the same time.
For example, the data 251 includes Data-A and Data-B.
Data-A may be a balance for Bank-Account-A and Data-B
may be a balance for Bank-Account-B. Data-A and Data-B
may be used by two transactions TX1 and TX2. TX1 may
involve deducting money from Data-A and adding the
deducted money to Data-B. Nearly the same time TX1 is
executing, TX2 may involve deducting money from Data-B
and adding the deducted money to Data-A.

The enlisted node 200 can receive prepare requests from
any number of transaction originator nodes to prepare mul-
tiple operations for any number of transactions for a commit.
For example, the enlisted node 200 can receive a prepare
request from a first transaction originator node for TX1 and
may concurrently or nearly at the same time receive a prepare
request from a second transaction originator node for TX2.
The prepare request can be a network call (e.g., remote pro-
cedure call (RPC)). A prepare request can include keys and a
new value for each key. A prepare request can be a request to
acquire a lock on the transaction data 251 for the requested
keys and to update the values associated with the keys using
the new values in the prepare request.

The order sub-module 201 can create an order to lock the
data 251 for the transaction. The order sub-module 201 can
use key identifiers that correspond to the keys in the prepare
request to create the lock order. The order sub-module 201
can store the lock order 253 in the data store 250. The order
sub-module 201 can create the lock order 253 by determining
a hash value for each of the keys using the corresponding key
identifiers and can rank the keys based on the hash values. The



US 9,208,190 B2

7

order sub-module 201 can use a non-cryptographic hash
function. In one embodiment, the order sub-module 201 uses
a MurmurHash function. One embodiment of creating an
order to lock the data for the transaction is described in greater
detail below in conjunction with FIG. 4.

The lock acquisition sub-module 205 can acquire a lock on
the data 251 based on the lock order 253. One embodiment of
acquiring locks using the created lock order is described in
greater detail below in conjunction with FIG. 3 and FIG. 4. If
the data 251 is currently locked, the lock acquisition sub-
module 205 can wait until the existing lock on the key is
released. In one embodiment, the lock acquisition sub-mod-
ule 205 uses a timeout period to determine how long to wait.
The timeout period can be stored in configuration data 255 in
the data store 250. When a lock is acquired, the lock acquisi-
tion sub-module 205 can update the current value for a key in
the data 251 based on the new value received in the prepare
request. The lock-acquisition sub-module 205 can send a
message to the transaction originator node indicating whether
the locks on the requested keys in the data 251 were success-
ful or not.

The enlisted node 200 can receive commit requests from
any number of transaction originator nodes to commit the
prepared operations. The commit request can include a
request to release the locks on the locked data 251 to allow
other transactions access to the updates made to the data 251.
The lock acquisition sub-module 205 can release the locks on
the locked data 251.

FIG. 3 is a block diagram of one embodiment of lock
reordering for optimistic locking of data on a single node to
avoid transaction deadlock. A first virtual machine 301 can
include a client application (not shown), a transaction man-
ager (not shown), and Process-1 303 running a transaction
originator node Node-1 303 that is managing a first transac-
tion Transaction-1 (TX1). A second virtual machine 311 can
include a client application (not shown), a transaction man-
ager (not shown), and Process-2 313 running a transaction
originator node Node-2 315 that is managing a second trans-
action Transaction-2 (TX2).

A third virtual machine 341 can include Process-3 343
running an enlisted node Node-3 345 that controls transaction
data for two transactions (e.g., TX1, TX2). Node-3 345 can
own transaction data, Data-A 351 and Data-B 353. The trans-
action data (e.g., Data-A, Data-B) includes keys and values
for the keys. Node-3 345 can include a lock module 347 (e.g.,
lock module 201 in FIG. 2) to create the same order for
acquiring the locks on the data for the multiple transactions
that use the same data.

The enlisted Node-3 345 receives (360) a prepare request
from Node-1 305 to prepare Data-A and Data-B for TX1 for
a commit. The prepare request can include a new value for
Data-A and Data-B. The prepare request may be for Node-3
345 to first lock Data-A and change the value corresponding
to Data-A and then to lock Data-B next and to change the
value corresponding to Data-B.

Nearly at the same time, the enlisted Node-3 345 receives
(361) a prepare request from Node-2 311 to prepare the
Data-B and Data-A for TX2 for a commit. The prepare
request can include a new value for Data-B and Data-A. The
prepare request may be for Node-3 345 to first lock Data-B
and change the value corresponding to Data-B and then to
lock Data-A next and to change the value corresponding to
Data-A.

To prevent a transaction deadlock, the lock module 347
ranks (362) the keys for Data-A and Data-B for TX1 and
ranks (363) the keys for Data-B and Data-A for TX2. For each
transaction (e.g., TX1, TX2) the lock module 347 can identify

10

15

20

25

30

35

40

45

50

55

60

65

8

the key identifier for each of Data-A and Data-B and can run
a consistent hash function on the key identifiers to create hash
values that correspond to Data-A and Data-B. The lock mod-
ule can create (364,365) the lock order to lock the data (e.g.,
Data-A and Data-B) based on the hash values. For example,
the lock module 347 may compare the hash values and iden-
tify which hash value is the least hash value and position the
data corresponding to the least hash value in a first position in
the lock order. For example, the lock order is to lock Data-A
first and then to lock Data-B next. The lock order is the same
for both TX1 and TX2 since the transactions use the same
data.

The created lock order may be an order that is different than
an order of executing the operations for a transaction. For
example, the operations for TX2 may have been executed as
writing to Data-B first and then writing to Data-A next, and
the order for locking the data for TX2 may be locking Data-A
first and then locking Data-B next.

The lock module 347 may acquire (366) a lock on Data-A
for TX1 and changes the value of Data-A using the value
received in the prepare request from Node-1 305. The lock
module 347 attempts to acquire a lock on Data-A for TX2, but
since Data-A is already locked for TX1, the lock module 347
waits (367) until the lock is released to acquire a lock on
Data-A for TX2. The lock module 347 may continue with the
lock order and acquire (370) the lock on Data-B for TX1. The
lock module 347 changes the value of Data-B using the value
received in the prepare request from Node-1 305. The lock
module 347 provides (372) a success message to Node-1 305.

The lock module 347 receives (374) a commit request to
release the locks for the lock data from Node-1 305. A commit
operation is to make a set of changes that were made by the
prepare operations to one or more caches for a particular XA
transaction permanent. A commit transaction requestcan be a
request to release the locks to allow other transactions access
to the data that was updated. The lock module 347 releases
(375) the lock on Data-A and releases (378) the lock on
Data-B for TX1.

Since the lock on Data-A is released, the lock module 347
acquires (369) the lock on Data-A for TX2 and changes the
value of Data-A using the value received in the prepare
request from Node-2 315. The lock module 347 may continue
with the lock order and acquire (371) the lock on Data-B for
TX2. The lock module 347 changes the value of Data-B using
the value received in the prepare request from Node-2 315.
The lock module 347 provides (373) a success message to
Node-2 315. The lock module 347 receives (375) a commit
request to release the locks for the lock data from Node-2 315
and releases (377) the lock on Data-A and releases (379) the
lock on Data-B for TX2.

FIG. 4 is a flow diagram of an embodiment of a method 400
of an enlisted node providing lock reordering for optimistic
locking of data on a single node to avoid transaction deadlock.
Method 400 can be performed by processing logic that can
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (e.g., instructions run
on a processing device), or a combination thereof. In one
embodiment, method 400 is performed by an enlisted node
125C executing in a machine 107 of FIG. 1.

At block 401, processing logic receives a prepare request
from a transaction originator node to lock data for multiple
operations of a transaction. Processing logic can receive the
prepare request via a network call over the network. The
transaction can be an XA transaction. Processing logic may
receive another prepare request from a different transaction
originator node for a different transaction that uses the same



US 9,208,190 B2

9

data during the execution of method 400 and may execute
another instance of method 400 in parallel.

At block 403, processing logic identifies the keys that
correspond to the data that is to be locked. The keys are
co-located on the enlisted node. Processing logic can examine
the prepare request which includes the keys that should be
locked and the corresponding new value for each key. The
keys that should be locked correspond to keys related to write
operations.

At block 405, processing logic ranks the keys to define an
order for acquiring locks for the data based on the key iden-
tifiers that correspond to the keys. Processing logic can deter-
mine a hash value for each of the keys using the correspond-
ing key identifiers and can rank the keys based on the hash
values. In one embodiment, processing logic orders the hash
values from a least hash value to a greatest hash value and
positions the keys in the order that corresponds to the least
hash value to the greatest hash value. In another embodiment,
processing logic orders the hash values from a greatest hash
value to a least hash value and positions the keys in the order
that corresponds to the greatest hash value to the least hash
value. Processing logic can use a non-cryptographic hash
function. In one embodiment, processing logic uses a Mur-
murHash function. The defined order may be an order that is
different than an order of executing the operations for the
transaction.

At block 407, processing logic attempts to acquire a lock
on the data based on the defined order. If a lock is not acquired
(block 407), for example, because there is an existing lock on
the key by another transaction, processing logic waits until
the existing lock on the key is released at block 409. If the
existing lock is not released (block 409), processing logic
determines whether a timeout period has expired at block
411. If the timeout period has not expired (block 411), pro-
cessing logic continues to wait until the existing lock on the
key is released at block 409. If the timeout period has expired
(block 411), processing logic sends a message to the transac-
tion originator node indicating a lock has not been acquired at
block 413.

If a lock is acquired (block 407) or if the existing lock on
the key is released (block 409), processing logic updates the
current value for the key based on the new value received in
the request at block 415. At block 417, processing logic
determines whether there is more data to lock for the trans-
action in the defined order. If there is more data to lock (block
413), processing logic attempts to acquire a lock on the data
based on the defined order at block 407. If there is no more
data to lock (block 413), processing logic sends a notification
to the transaction originator node indicating a lock has been
acquired for the keys pertaining to the transaction at block
419. Atblock 421, processing logic receives a commit request
to release the locks on the locked data. At block 423, process-
ing logic releases the locks to allow other transactions access
to the data.

FIG. 5 illustrates a representation of a machine in the
exemplary form of a computer system 500 within which a set
of instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a LAN, an
intranet, an extranet, and/or the Internet. The machine may
operate in the capacity of a server or a client machine in
client-server network environment, or as a peer machine in a
peer-to-peer (or distributed) network environment.

The machine may be a personal computer (PC), atablet PC,
a set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network

10

15

20

25

30

35

40

45

50

55

60

65

10

router, a switch or bridge, or any machine capable of execut-
ing a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while a single
machine is illustrated, the term “machine” shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per-
form any one or more of the methodologies discussed herein.

The exemplary computer system 500 includes a processing
device 502, a main memory 504 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 506 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 518, which communicate with each other via a bus
530.

Processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, a cen-
tral processing unit, or the like. More particularly, the pro-
cessing device may be complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. Processing device 1202 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
orthe like. The processing device 502 is configured to execute
instructions 522 for performing the operations and steps dis-
cussed herein.

The computer system 500 may further include a network
interface device 508. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 516 (e.g., a
speaker).

The data storage device 518 may include a machine-read-
able storage medium 528 (also known as a computer-readable
medium) on which is stored one or more sets of instructions or
software 522 embodying any one or more of the methodolo-
gies or functions described herein. The instructions 522 may
also reside, completely or at least partially, within the main
memory 504 and/or within the processing device 502 during
execution thereof by the computer system 500, the main
memory 504 and the processing device 502 also constituting
machine-readable storage media.

In one embodiment, the instructions 522 include instruc-
tions for a lock module (e.g., lock module 201 of FIG. 2)
and/or a software library containing methods that call mod-
ules in a lock module. While the machine-readable storage
medium 528 is shown in an exemplary embodiment to be a
single medium, the term “machine-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-readable stor-
age medium” shall also be taken to include any medium that
is capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media and magnetic media.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer



US 9,208,190 B2

11

memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. The operations are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec-
trical or magnetic signals capable of being stored, combined,
compared, and otherwise manipulated. It has proven conve-
nient at times, principally for reasons of common usage, to
refer to these signals as bits, values, elements, symbols, char-
acters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving” or “identifying” or “performing” or “determin-
ing” or “sending” or “comparing” or “storing” or “locating”
or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the intended purposes, or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per-
form the method. The structure for a variety of these systems
will appear as set forth in the description below. In addition,
the present invention is not described with reference to any
particular programming language. It will be appreciated that
a variety of programming languages may be used to imple-
ment the teachings of the invention as described herein.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
invention. A machine-readable medium includes any mecha-
nism for storing information in a form readable by a machine
(e.g., a computer). For example, a machine-readable (e.g.,
computer-readable) medium includes a machine (e.g., a com-
puter) readable storage medium such as a read only memory
(“ROM”), random access memory (“RAM”), magnetic disk
storage media, optical storage media, flash memory devices,
etc.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exemplary

25

30

35

40

45

55

65

12

embodiments thereof. It will be evident that various modifi-
cations may be made thereto without departing from the
broader spirit and scope of embodiments of the invention as
set forth in the following claims. The specification and draw-
ings are, accordingly, to be regarded in an illustrative sense
rather than a restrictive sense.

What is claimed is:

1. A method comprising:

receiving, by a processing device, a first prepare request

identifying data to lock for a first transaction, the first
prepare request indicating a first locking order that is
different from a second locking order indicated by a
second prepare request identifying the data to lock for a
second transaction;

ranking, by the processing device, a plurality of keys asso-

ciated with the data to define a third locking order used

to lock the data for the first transaction and the second

transaction, wherein ranking the plurality of keys com-

prises:

identifying a key identifier for each key of the plurality
of’keys, the key identifier comprising a key-value pair
indicating a data node location for a corresponding
key,

determining a hash value for each key of the plurality of
keys,

ordering the hash values from a least hash value to a
greatest hash value or from a greatest hash value to a
least hash value, and

ordering the plurality of keys in view of ordering the
hash values; and

acquiring locks for the data for the first transaction or the

second transaction using the third locking order,
wherein acquiring the locks for the data comprises
updating the respective key identifier for each of the
plurality of keys associated with the third locking order
in view of a corresponding hash value.

2. The method of claim 1, further comprising:

receiving a third prepare request identifying the data to

lock for a third transaction;

releasing the locks for the data for the first transaction or

the second transaction; and

acquiring locks for the data for the third transaction using

the third locking order.

3. The method of claim 1, wherein the third locking order
is different than an execution order of executing a plurality of
operations for the first transaction and the second transaction.

4. The method of claim 1, wherein determining the hash
value for each of the plurality of keys comprises using a
non-cryptographic hash function.

5. The method of claim 1, wherein the first transaction and
the second transaction are multi-operation transactions.

6. The method of claim 1, wherein the plurality of keys are
co-located on a node comprising the processing device.

7. A non-transitory computer-readable medium including
instructions that, when executed by a processing device,
cause the processing device to:

receive, by the processing device, a first prepare request

identifying data to lock for a first transaction, the first
prepare request indicating a first locking order that is
different from a second locking order indicated by a
second prepare request identifying the data for a second
transaction;

rank a plurality of keys associated with the data to define a

third locking order used to lock the data for the first
transaction and the second transaction, wherein to rank
the plurality ofkeys comprises the processing device to:



US 9,208,190 B2

13

identify a key identifier for each key of the plurality of
keys, the key identifier comprising a key-value pair
indicating a data node location for a corresponding
key,

determine a hash value for each key of the plurality of
keys,

order the hash values from a least hash value to a greatest
hash value or from a greatest hash value to a least hash
value, and

order the plurality of keys in view of ordering the hash
values; and

acquire locks for the data for the first transaction or the

second transaction using the third locking order,
wherein to acquire the locks for the data further com-
prises the processing device to update the respective key
identifier for each ofthe plurality of keys associated with
the third locking order in view of a corresponding hash
value.

8. The non-transitory computer-readable medium of claim
7, the processing device further to:

receive a third prepare request identifying the data to lock

for a third transaction;

release the locks for the data for the first transaction or the

second transaction; and

acquire locks for the data for the third transaction using the

third locking order.

9. The non-transitory computer-readable medium of claim
7, wherein the third locking order is different than an execu-
tion order of executing a plurality of operations for the first
transaction and the second transaction.

10. The non-transitory computer-readable medium of
claim 7, wherein to determine the hash value for each of the
plurality of keys, the processing device is to use a non-cryp-
tographic hash function.

11. A system comprising:

a memory; and

aprocessing device operatively coupled to the memory, the

processing device to:
receive a first prepare request identifying data to lock for
a first transaction, the first prepare request indicating

5

10

15

20

25

30

14

a first locking order that is different from a second

locking order indicated by a second prepare request

identifying the data to lock for a second transaction;

rank a plurality ofkeys associated with the data to define

a third locking order, the third locking order used to

lock the data for the first transaction and the second

transaction, wherein to rank the plurality of keys the

processing device is to:

identify a key identifier for each key of the plurality of
keys, the key identifier comprising a key-value pair
indicating a data node location for a corresponding
key,

determine a hash value for each key of the plurality of
keys,

order the hash values from a least hash value to a
greatest hash value or from a greatest hash value to
a least hash value, and

order the plurality of keys in view of ordering the hash
values; and

acquire locks for the data for the first transaction or the

second transaction using the third locking order,

wherein to acquire the locks for the data further com-

prises the processing device to update the respective

key identifier for each of the plurality of keys associ-

ated with the third locking order in view of a corre-

sponding hash value.

12. The system of claim 11, wherein the processing device
is further to:
receive a third prepare request identifying the data to lock

for a third transaction;

release the locks for the data for the first transaction or the

second transaction; and

acquire locks for the data for the third transaction using the

third locking order.

13. The system of claim 11, wherein the third locking order
is different than an execution order of executing a plurality of
operations for the first transaction and the second transaction.

#* #* #* #* #*



